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Motivation

Credit: RoboBees Project, Harvard University
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Problem Statement

N
mini;nize E lz ?,(X)]
i=1
subjectto Ax < b
xeX

» Each agent has objective f;(x) which can only be observed with
additive noise f;(x) = fi(x) + €

» ¢ has zero mean and finite variance

» X is an is a nonempty, closed, convex subset of R”
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Outline

Agents connected by a network cooperatively minimize the global objec-
tive though they only have knowledge of their individual objectives (and
shared information from the network).

» Aim: Distributed Multi-agent Derivative-free Optimization
> At iteration j, agent / builds a model m} using observed values of f.
» Communicate where they are going to their neighbors in the
network.
» Take the information from their neighbors for iteration j + 1.
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Outline

Agents connected by a network cooperatively minimize the global objec-
tive though they only have knowledge of their individual objectives (and
shared information from the network).

» Aim: Distributed Multi-agent Derivative-free Optimization

> At iteration j, agent / builds a model m} using observed values of f.

» Communicate where they are going to their neighbors in the
network.

» Take the information from their neighbors for iteration j + 1.

» Today: Distributed Multi-agent Optimization with Inexact
Subproblems

» First: Single agent case
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The Problem

We want to solve:
minimize f(x)
xER"

when V£ (x) is unavailable and we only have access to noise-corrupted
function evaluations f(x).
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The Problem

We want to solve:
minimize f(x)
x€ER"
when Vf(x) is unavailable and we only have access to noise-corrupted
function evaluations f(x).

Such noise may be deterministic (e.g., from iterative methods) or
stochastic (e.g., from a Monte-Carlo process).

Model-based methods are one of the most popular methods when Vf is
unavailable, and the only recourse when noise is deterministic.



The Problem

We analyze the convergence of our method in the stochastic case:

f(x) =f(x) +e,

where ¢ is identically distributed with mean 0 and variance 0° < .

7 of 36



The Problem

We analyze the convergence of our method in the stochastic case:
f(x) = f(x) +e

where ¢ is identically distributed with mean 0 and variance 0° < .

This is equivalent to solving:

minimize E [f(x)] .

X
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Strongly A-poised Sets




Other Approaches

» Stochastic Approximation

XK1 = Xk 4 2, G (x¥)
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points of interest.



Other Approaches

» Stochastic Approximation
XK1 = xk 4 2, G(x¥)
Response Surface Methodology

> Build models using a fixed pattern of points, for example, cubic,
spherical, or orthogonal designs among many others.

v

v

Repeated Sampling

» Take a favorite method and repeatedly evaluate the function at
points of interest.

v

How to define a,?

v

What pattern creates models that best fit the function?

v

Repeated evalutations provide information about the noise ¢, not f.



Overview

We therefore desire a method that
1. Adjusts the step size as it progresses
2. Does not use a fixed design of points

3. Does not repeatedly sample points
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Overview

We therefore desire a method that
1. Adjusts the step size as it progresses
2. Does not use a fixed design of points

3. Does not repeatedly sample points

We'd like the class of possible models to be general.



k-fully Linear model

If f € LC and 3 a vector kK = (Ker, Keg) Of positive constants such that

> the error between the gradient of the model and the gradient of
the function satisfies

[VF(y) = Vm(y)|| < kegA Yy € B(x; A),
» the error between the model and the function satisfies
[f(y) = m(y)| < ker A Vy € B(x; A),

we say the model is k-fully linear on B(x; A).
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.\ _________________________________________
a-probabilistically k-fully Linear model

Definition

Let k = (Kef, Keg) be a given vector of constants, and let a € (0, 1).
Let B C R” be given. A random model my generated at the kth
iteration of an algorithm is a-probabilistically k-fully linear on B if

P (my is a k-fully linear model of f on B|Fy_1) > a,

where F,_1 denotes the realizations of all the random events for the
first kK — 1 iterations.

° 13 of 36



.\ _________________________________________
Regression Models can be a-probabilistically x-fully

Linear

For a given x e R", A >0, a € (0, 1),
> Y C B(x; A) is strongly \-poised,
» The noise present in f is i.i.d. with mean 0, variance 02 < oo,
> |Y]> C/A%,
Then there exist constants k = (Ker, Keg) (independent of A and Y')

such that the linear model m regressing Y is a.-probabilistically k-fully
linear on B(x; A).
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Measuring Progress

In traditional trust region methods, if x* 4+ s* is the minimizer of my,
the success of moving from x* to x* + s* is measured by

f(xK) — F(xK + s¥)
My (xK) — my(xk + sk)

Pk =
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Measuring Progress

In traditional trust region methods, if x* 4+ s* is the minimizer of my,
the success of moving from x* to x* 4+ s* is measured by

f(xK) — F(xK + s¥)
My (xK) — my(xk + sk)

Pk =

In the stochastic case, a similar calculation is not obvious.

FO— F;
my(xK) — my(xk 4 sk)

Pk =
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Algorithm 1: A trust region algorithm to minimize a stochastic function
Set k = 0;

Start

Build a a-probabilistically k-fully linear model my on B(x*; Ax);

Compute sk =arg min  my(s);
si[|Ixk—s||<Ak

if my(s*) — m(x¥ + s¥) > BA then
R-F
my(xk) — my(xk + sk)’

Calculate px =

if px > n then

| Calculate x*™ = xK 4 s5; Apy1 = YincAss
else

| x
end
else

| x
end
k = k+ 1 and go to Start;

k+1 k. _ )
= x5 Akp1 = Yeec Dk

k+1 k. _ .
+ =X yAk-Fl_fydeCAkv




Convergence

Under what assumptions will our algorithm converge almost surely to a
first-order stationary point?

» Assumptions on f
» Assumptions on ¢

» Assumptions on algorithmic constants
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Convergence

On some set Q2 C R" containing all iterates visited by the algorithm,
» f is Lipschitz continuous
» Vf is Lipschitz continuous
> f has bounded level sets

The additive noise € observed when computing f is independent and
identically distributed with mean zero and bounded variance o>.
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Convergence

The constants o € (0,1), Ygec € (0,1), and yi,c > 1 satisfy

Yine—1

l 1— Yinc
' 4 [ linc_l + = ldsc]

a > max
2%inc Ydec

where
> « is the lower bound on the probability of having a k-fully linear
model,
> Yaec € (0, 1) is the factor by which we decrease the trust region
radius,
> Yinc > 1 Is the factor by which the trust radius is increased.
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Convergence

The constants o € (0,1), Ygec € (0,1), and yi,c > 1 satisfy

Yine—1
Yinc
linc_l + = Ydec
2%inc Ydec

1
o> maxs =, 1—
2 4[

where
> « is the lower bound on the probability of having a k-fully linear
model,
> Yaec € (0, 1) is the factor by which we decrease the trust region
radius,
> Yinc > 1 Is the factor by which the trust radius is increased.

If Yine =2 and Ygec = 0.5 = a > 0.9.
If Yine =2 and Ygec = 0.9 = o > 0.65.
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Proof Outline

If the above assumptions are satisfied, our algorithm converges almost
surely to a first-order stationary point of f.

——————————————— 20 of 36



-
Further Information and Current Work

Preprint on Optimization Online

“Stochastic Derivative-free Optimization using a Trust Region
Framework”

Just ask: jmlarson@anl.gov
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Preprint on Optimization Online

“Stochastic Derivative-free Optimization using a Trust Region
Framework”

Just ask: jmlarson@anl.gov

» Generalizing results to ensure a practical algorithm converges.

> For example, not requiring a-probabilistically x-fully linear models
every iteration.
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-
Further Information and Current Work

Preprint on Optimization Online

“Stochastic Derivative-free Optimization using a Trust Region
Framework”

Just ask: jmlarson@anl.gov

» Generalizing results to ensure a practical algorithm converges.

> For example, not requiring a-probabilistically x-fully linear models
every iteration.

» Smartly constructing a-probabilistically x-fully linear models.

21 of 36



Problem Statement

N
mini;nize E lz ?,(X)]
i=1
subjectto Ax < b
xeX

> Each agent has objective fi(x) which can only be observed with
additive noise fi(x) = fi(x) + €
» Each f; is convex

€ has zero mean and finite variance

v

» X is an is a nonempty, closed, convex subset of R”
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Problem Statement

mini;nize Z fi(x)
1

minimize Z fi(x)

subject to  x; = X; V(i,j)e €&
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Problem Statement

minimize  f(x)
X

subject to Ax < b
xeX

or

mini)[nize f(x)+9(z2)

subjectto Ax+ Bz=c
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Previous Methods

Lagrangian dual decomposition methods (Nedi¢, Ozdaglar, Johansson,
more)

» Challenge for using the dual when constructing models:

Global
Local ?7?

Global

i\ —
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Previous Methods

Primal Methods using Consensus (Tsitsiklis, Bertsekas)

» Can be quite slow

Iterates have the form:
N
k+1 _ ok gk
X = E WX ad,
J=1

where a is a step size, d* is an element of the subdifferential of f; at x/.
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Previous Methods

Primal Methods using Consensus (Tsitsiklis, Bertsekas)

» Can be quite slow

Iterates have the form:

N

_ ok ok

_E wx; — adj
j=1

where a is a step size, d* is an element of the subdifferential of f; at x/.

NLBCz

N
F(y¥) < £ +al?C + ZH X + 5 dlst(y X*)+al)’

Nedi¢, Ozdaglar (2009)
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Previous Methods

Alternating Direction Method of Multipliers (ADMM)
> Developed in the 1970s (Hestenes, Powell, Eckstein)

» Roots in the 1950s (Dantzig, Wolfe, Benders)

» Equivalent or similar to many other algorithms
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Previous Methods

Alternating Direction Method of Multipliers (ADMM)
> Developed in the 1970s (Hestenes, Powell, Eckstein)

» Roots in the 1950s (Dantzig, Wolfe, Benders)

» Equivalent or similar to many other algorithms

>

>

>

Douglas-Rachford splitting
Spingarn’s method of partial inverses
Dykstra’s alternating projections
Proximal methods

Bregman iterative methods

More. ..



ADMM

minimize  f(x) + g(z)
- (1)
subjectto Ax+ Bz=c
has augmented Lagrangian

Lo(x,2.14) = F(x) + 9(2) + 17 (Ax + Bz = ) + & | Ax + B2 — |
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ADMM

minimize  f(x) + g(z) "
x 1

subjectto Ax+ Bz=c

has augmented Lagrangian

Lo(x, 2. 1) = F(x) + 9(2) + u7 (Ax + Bz = ) + £ | Ax + Bz — |

Algorithm 2: Traditional ADMM
Pick initial values z°, u°, p;
for k=0,1,... do
xK*1 = argmin, Ly(x, z¥, u*);
ZKtt = argmin, L,(x**1, z, uk);
P = K 4 p (AR 4 BZFH — o)
end




Previous inexact ADMM methods

Algorithm 3: Deng, Yin (2013) Generalized ADMM

Pick Q > 0 and symmetric P, z°, u°, p;

for k=0,1,... do
X1 =argmin, Ly(x, 25, k) + 3(x — x*)P(x — x¥);
Z" = argmin, Ly(x**1, z, k) + 3(z — 2¥)Q(z — z¥) ;
P = K 4 p (AR 4 BZFH — )

end




Previous inexact ADMM methods

Algorithm 3: Deng, Yin (2013) Generalized ADMM

Pick Q > 0 and symmetric P, z°, u°, p;

for k=0,1,... do
X1 =argmin, Ly(x, 25, k) + 3(x — x*)P(x — x¥);
Z" = argmin, Ly(x**1, z, k) + 3(z — 2¥)Q(z — z¥) ;
P = K 4 p (AR 4 BZFH — )

end

» Fixed matrices P and Q
» Still dealing with arg min, f



Our approach

Algorithm 4: Our modification of ADMM

Pick initial values z°, u°, p;
for k=0,1,2,... do
Skt —
argmin, F(x*) + V. F(x¥) T (x = x¥) + 2(x — x¥)TV2F (x¥)(x — x¥)
+ (W) T(Ax+ BzK — )+ & ||Ax + BzK — ¢
ZK = argmin, L,(x**1, z, uk);
P = ke p (AR 4 BZRL — ¢);
end




Our approach

Algorithm 4: Our modification of ADMM

Pick initial values z°, u°, p;

for k=0,1,2,... do
kL —
argmin, F(x*) + Vi F(x¥) T (x = x¥) 4+ 2 (x = x¥) TV2F(x¥)(x — x¥)

+ (W) T(Ax + BzK — ) + & ||Ax + BzF — ¢
ZK = argmin, L,(x**1, z, uk);
P = ke p (AR 4 BZRL — ¢);
end

Assumption

Assume f is convex and twice continuously differentiable in the region
of interest so V2f(x*) is well-defined.
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Convergence

There exists a saddle point to problem (1). In other words, there exists
points x*, z*, u* satisfying
Vzg(Z*) 4 BT[L* =0
Vif(x)+ATu* =0
Ax* 4+ Bz* = ¢

Define ||x||3 = x " Ax and

X X V2f(x*)+pATA 0 0
yi=|z"| .,y = |ZK| H = 0 ol 0
w uk 0 0 %/
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Convergence

Lemma

Iterates generated by our algorithm satisfy
% |2 %2 2
Iy —vy ||Hk = [yt -y ||/—/k > Ix* - Xk+1||(V)2(f(xk)+pATA—éATA)
1
+(; =) |l — |

for all 3 > 0.
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Convergence

Lemma

Iterates generated by our algorithm satisfy

% |2 %2 2
Iy —vy ||Hk = [yt -y ||Hk > Ix* - Xk+1||(V)2(f(x’<)+pATA—%ATA)
1
+ (5 =6) |l — |
for all 3 > 0.

» This shows y* converges to y* if V2f(x¥) = 0.
» This shows y* converges to some y if V2f(x*) = 0.
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.
Example: General ¢; Regularized Loss Minimization

Consider the problem
minimize /(x) + A ||x||;

where [ is any convex loss function. In ADDM form, we can write this:
mini)[nize I(x)+ 9(2)
subjectto x—z=0

where g(z) = [ 2]}
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.
Example: General ¢; Regularized Loss Minimization

Consider the problem
minimize /(x) + A ||x||;

where [ is any convex loss function. In ADDM form, we can write this:
minixmize I(x)+ 9(2)
subjectto x—z=0

where g(z) = [ 2]l

» Instead of solving the x-update exactly, solving the quadratic
approximation can be faster.
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Results

minimizez (log (=bi(a/ x))) + Xl

where a; are rows in a feature matrix A and b is a response vector.

» Boyd’s exact minimization (for a large problem) takes a total of
4928 iterations (summing over all agents)

» Solving only a single Newton step takes 1700 iterations



Concerns and Assumptions

» Time varying network
» Asynchronous updates
» Delays in communication

» Nonconvex agent objectives
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Concerns and Assumptions

Concerns

» Time varying network
» Asynchronous updates
» Delays in communication

» Nonconvex agent objectives

» Constant network
» Synchronized updates

v

No delays in communication
» Convex agent objectives

A‘Q\Lﬁ; =

p— 35 of 36



Thanks

Questions?

jmlarson®@anl.gov
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